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A N A L Y T I C A L  M E T H O D  F O R  P R E D I C T I O N  O F  T H E  

S T R E N G T H  O F  C O M P O S I T E  L A M I N A T E S *  

R. A. Azamatov, 1~. S. Sibgatnllin, and I. G. Teregulov UDC 539.3; 539.4 

The problem of prediction of the strength of composite laminates based on the properties of the individual laminae and 

the structure of the composite has been solved for the general case in [1], where parametric equations were obtained for the 

limiting surface for a composite of arbitrary structure. However, application of these equations for practical computations 

requires a computer. 

In this paper, we propose a technique allowing us to solve the considered problem by a simpler method for a composite 

with a structure in which there are identical layers with orientation angles (+~j) and (-~oj), where j = 1, n, n is the number 
of layers. There are not other constraints on the structure surface of a composite of structure [ + ~o] c using the hypothesis that 

the strain rate field is uniform over the thickness of the packet of layers. The theoretical results are compared with the 
corresponding experimental results of other authors. For prediction of the strength of a composite of arbitrary structure, we 
have used the Voigt model [2] in the theory of mixtures. As an example, we solve the problem of the supporting capacity of 
the composite tube of the drive shaft of an automobile. 

1. The limiting surface in the space of the stresses oij for an orthotropic monolayer in many cases of practical 
importance may be described by a second-degree equation [Refs. 3, 4, and others]: 

2 + 2 d a ~ : + 2 e a u u + l a ~ u + m a ~ z + n a ~ z = l "  a a ~  + 2ba~:a~ + cauu (1.1) 

Here xyz is a coordinate system whose axes coincide with the axes of the orthotropy of the monolayer (the z axis is orthogonal 
to the plane of the layer). The coefficients a ..... n of Eq. (1.1) are defined in terms of the strength characteristics of the 
monolayer. 

Let us introduce the coordinate system ~1~2 Z connected with an element of the structure. Let us consider two jointly 
functioning identicai monolayers whose strength properties are determined by Eq. (1.1). One of the layers makes the angle 

(+~o) with the ~1 axis, the other layer makes the angle (-~o) with the same axis. In the system ~ i~2z, Eq. (1.1) for the layer 
with orientation angle (+  ~o) has the form 

~+ =_ A(a+ ) 2 + 2Ba+ a + + C(a+2) 2 + 2Da + + 2Ea+2 + L(a+2)2+ 

+ 2Pa+la+ 2 + 2Ra+2a+l~ + 2Qa+2+ 

+ I r  + + + 2Ma31a32 + N(a3+2) 2 = 1, 
(1.2) 

and for the layer with orientation angle (-~p), it has the form 

~ -  = A(afi)  2 + 2Bai-xa~" 2 + C(a~'2) 2 + 2Daft + 2Ea~" 2 + L(cri-2) 2_ 

*This work was done with the f'mancial support of the Russian Foundation for Basic Research (Project Code 93-013-16747). 

Kamskii Automobile Plant AO, Naberezhnye Chelny 423810. Kamskii Polytechnical Institute, Naberezhnye Chelny 

423810. Kazanskii Institute of Construction Engineering, Kazan 420015. Translated from Prikladnaya Mekhanika i 
Tekhnicheskaya Fizika, No. 2, pp. 144-149, March-April, 1995. Original article submitted December 10, 1993; revision 
submitted March 16, 1994. 

274 0021-8944/95/3602-0274512.50 r Plenum Publishing Company 



1 

0 eii 

Fig. 1 

- 2 P a ~ a ~  - 2 R a ~ a ~  - 2 Q a ~ +  

+ K ( a ~ )  2 - 2 M a ~ a ~  + N ( a ~ )  2 = 1, 
(1.3) 

where the coefficients A .... N depend linearly on the coefficients a , . . . ,n  of Eq. (1.1) and are functions of the angle ,p. 

In Fig. 1, we present the conventional stress a i j -  strain eij diagram (the broken line OAB), The section OA corresponds 

to the stable state of the material, while the section AB corresponds to the unstable state of the material. We assume that 

transition from the stable state to the unstable state occurs directly in the time interval At. The material in this time experiences 

the full spectrum of states. We will consider as the virtual aij-eij diagram the one which would occur if we could stabilize the 

properties of the material at the considered moment of time. The virtual aij-eij diagrams are located at the limits of the angle 

CAB (Fig. 1, dashed lines). 

Among the virtual diagrams there is one which is parallel to the eij axis (the line AD). The state of the material 

corresponding to the diagram AD we take as the limiting state. In the limiting state, the material is stable (the Drucker postulate 

is valid [5]), i.e., ~o'ijSeij ~ 0. Here the ~o'ij are infinkesimally small stress increments, the (~8ij are infinitesimally small strain 

increments. As the loading surface in the limiting state, we take the strength surface of  the considered material, described by 

the equation ,I,(aij) = 0. The "vector" of the increments 5aij is directed along the tangent to the loading surface. In other words, 

during fracture the material passes through a state for which the relations of the associative law for strain are valid 

,SEu = ,5,X Oai: j (1 

for the condition that as the loading surface (I,(aij) = 0 in this state we take the strength surface for the material. In (1.4), 

(5~k((58ij) is a scalar function. Dividing both sides of (1.4) by dt, we can go to the strain rates. Let us assume that in the limiting 

state, the strains are small. 

Let us consider the case of a plane stress-strain state of two jointly functioning layers of orientation (___,p): 

~ , ,  = o,5( ,,+, + , , 5 ) ,  ,,:2 = o,5(o+: + , , i : ) ,  ,,,2 = o..5(,,+~ + , , 5 ) .  

Using (1.2)-(1.4), let us write out the kinematic relations from (1.5): 

i + ( Z a  +, + Ba+2 + Pa+2 + D) = .~-(Aa~, + BaT~ " - Pcr';-~. § D>. 

i + ( B a  + + Ca+ + Ro'+2 + E) = .~-(Ba{-, + Co- L - Re, L. . I?). 

i + ( P a  + + Ra + + ta+2 + Q) = .~-(-Pa{-,  - Rcr~-: + Lcr 5 -. (2! 

Using the results in [1], for a plane stress-strain state of the layers we can write 

,~2 = ~11~121 ..[_ 22622 ..]_ 33~12 ..[. 2(~12~11~22 ..[. ~23~22~12 "[- 1~31~12~11). 

(1.5) 

(1.6) 

(1.7) 
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Here 6ik (i, k = 1, 3) is the algebraic cofactor of the (i, k)-th element of the determinant A [1]; based on Eqs. (1.2) and (1.3), 

we obtain 

A + = 
A B 
B C 

P R 

P 
R , 

L 
A -  = 

A B - P  
B C - R  

- P  - R  L 
(1.8)  

From (1.5), (1.7), (1.8) it follows that for the considered case of the s t ress-s t rain state of a composite of  structure [+ r  the 

equality ~,+ = X-  holds. Then, using (1.6) and the statics relations from (1.5), we find 

o"+1 = alx + [( B R - C P ) / (  A C  - B2)lal2, 

a+2 = a22 + [ ( B P  - A R ) / ( A C  - B2)]aa2, 

a + = a12 - ( P a l x  + Ra22 + Q ) / L .  

Let us consider the case of a purely transverse shear of two jointly functioning layers of orientation (+,#): 

(1.9) 

= = 

(r31 = 0,5(c,3+1 + a : : ) ,  o32 = 0 , 5 ( , , +  + a~'~). 
(1.10) 

For the state of the material defined by relations (1.10), it follows that ~+ = 9;,-. Considering this equality and using the 

relations (1.2)-(1.4), (1.10), we obtain 

M M 
a + = aal - "~-r a32, a+2 = ~r32 - "~-a31. ( I . I1)  

Let us assume that in the limiting state in the general case of the s t ress-s t rain state of two jointly functioning layers of 
orientation (+__~o), a combination of relations (1.5) and (1.10) holds; then, substituting (1.9) and (1.11) into (1.2), we find 

A L  - p 2  - -  a~x + 2 B L  - P R  C L  - R 2 2 D L -  P Q  
.L ~176 Jr ~ 0.22 + L 

+2 E L  - R Q  ( L  2 B P R -  C P  2 - A R  2 

+ (1 - M2 Q2 
h-~:-~) (Ka32, + 2Ma3,a32 + Na~2 ) - T = 1. 

a11+ 

(1.12) 
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Fig. 4 

Equation (1.12) is the equation for the limiting surface in the system ~i~2 Z for a composite of structure [ + r 1 6 2  (we 

'can find substantiation for this claim, for example, in [6]). We should note that, expressing o-]l,  o-'22, o--J2, o-'31, o-32 in terms 

of al l ,  022, ~ o-31, o-32 and substituting these expressions into (1.3), we again obtain Eq. (1.12). 
Let us rewrite (1.12) in the form 

Ax(7~I + 2Bvril(722 + C1o-~2 + 2Dlal l  + 2E1(7:2+ 

+51(7122 + K10"321 + 2M1(731(732 + N1(722 -- 1, 
(1.13) 

where 

A L -  p2 L ( K N  - M ~) 
A ~ -  L+Q-----V . . . .  ; N x -  K ( L + Q : )  

Determining the points of intersection of the surface (1.13) with the axes o-ll, ~ ~ ~ o32, we find the 

corresponding strengths of the composite of structure [+ '# / -m]c:  

~,t - D l  + V/r~12 + A1 
(711 = 

Ax 

- D I  - v/rD~l ~ + AI 1 tic 
(Tll = At . . . .  ' (7~ = + v / - ~ l "  

(1.14) 

Here the index u means the limiting value of the corresponding stress; the index t refers to tensile stresses while the index c 
refers to compressive stresses. 

In Fig. 2, we present the results of  comparison of the values of the coefficients of  Eq. (1.13), determined using the 
technique outlined above (solid lines), with the corresponding experimental values from [7] (light and dark triangles). As we 

see the qualitative agreement between the results is good. Qualitative discrepancies are connected primarily with the indication 

of fracture used in the experiment and with deviations from the geometric hypotheses assumed in deriving Eq. (1.12). 

The results obtained can be used to predict the strength of hybrid composites when there are several stipulations. For 
plane strain of such composites, applying internal elementary forces to some surface S O , in the general case we obtain internal 

moments in addition to internal forces. Let us assume that the stresses from the moments do not significantly affect the strength 
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characteristics of  the hybrid composite relative to tension compression, and shear over a rather broad range of variation of these 

moments. Then the strength properties of the composite can be predicted on the basis of the rule of mixtures 

r~ 

k = l  

u(k) 
where crijU is the strength characteristic of the composite; ~rij is the corresponding strength of two jointly functioning identical 

monolayers with stacking angles +~o k, defined according to (1.4); hk = hk/h is the relative thickness of two such layers; h is 

the thickness of  the packet of  layers. 
2. Let us consider the problem of determining the limiting torque for the composite tube of the drive shaft of  an 

automobile. The strength calculation for static action of an external torque is one of the necessary elements in the full 
calculation for designing such shafts. One possible structural variant for the drive shaft is shown in Fig. 3, where 1 is two 

internal spiral-crossed layers of glass-fiber reinforced plastic with fiber orientation angles +45 ~ 2 are layers of  glass-fiber 

reinforced plastic with fiber orientation angles :t: 10 ~ 3 are layers of high strength carbon-fiber reinforced plastic with fiber 

orientation angles +'r 4 is a protective layer of glass-fiber reinforced plastic with fiber orientation angle 90 ~ (the fiber 
orientation angle is measured from the generatrix of the cylinder). A composite tube of analogous structure has been 

successfully used in drive shafts of passenger cars [8]. 
As a rule, the external dimensions of the shaft are limited by design requirements. Below as an example we investigated 

the dependence of the supporting capacity of a composite tube on the values of the 9rientation angles +~o 3 of carbon-fiber 
reinforced plastic layers for two variants of its inner diameter and wall thickness. In Fig. 4, the limiting curve 1 corresponds 

to the following geometric parameters of the tube and the composite: din = 120 mm (inner diameter of  the tube), h = 8 mm 
(wall thickness), h I = 1.2 mm, h 2 = 3.6 mm, h3= 2.6 mm; h 4 = 0.6 mm (thickness of the layers); and curve 2 corresponds 
to the parameters: din = 94 nun, h = 4 mm, h 1 = 1.4 mm, h 2 = 0, h 3 = 2.4 mm, h 4 = 0.4 mm. The strength characteristics 
of the glass-fiber reinforced plastic monolayer are taken from [9], and the strength characteristics of  the carbon-fiber reinforced 

plastic monolayer are taken from [10]. 
Having available a set of curves similar to curves 1, 2 in Fig. 4, the designer can easily select the orientational variant 

in designing the drive shaft, which may be used as the basis for other types of calculation in the design process. In this case, 
we need to strive for a decrease in the overall mass of the shaft and the relative volume of the more expensive carbon-fiber 

reinforced plastic within the composite, simultaneously satisfying the conditions for strength, rigidity, durability, and other 
requirements imposed on the service conditions for the article. 
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